
lab10 - Research #23

Reseach Ethereum's SWARM and compare with IPFS

20.12.2016 15:13 - didi

Status: In Progress

Priority: Normal

Assignee:

Description

Blog announcement of public alpha

There's a dedicated swarm binary which can run standalone. If connected to an Ethereum node (rpc via --ethapi), it also supports

name resolution (ENS.

There are many similarities to IPFS.

Files are divided up into chunks (SWARM currently uses a default size of 4kB vs IPFS's 256k). A merkle tree of the chunk hashes

results in a root hash for every file.

Swarm uses the bzz wire protocol which like Ethereum is based on devp2p and rlpx while IPFS is based on libp2p, another P2P

network layer.

An advantage of having the same network layer like Ethereum is that Dapps using both Ethereum and SWARM can share the

network layer, while for Ethereum + IPFS there's currently the overhead of being connected to 2 distinct P2P networks (which

mainly means more low level (TCP, UDP) connections and more book-keeping).

Both use a Kadmlia DHT for routing.

Where Swarm and IPFS significantly differ (according to my current understanding) is how uploaded content is distributed.

IPFS seems to so far have no built-in mechanism for automatically distributing content. It's probably more similar to BitTorrent in this

respect. Nodes need to explicitly pin content they want to keep replicated.

As long as content uploaded to an IPFS node isn't explicitly requested by another node and then cached or pinned, the content just

sits on the initial node.

As explained here by the founder, mechanisms for automated replication can and should be built on top of IPFS, an example for this

is ipfs-cluster.

Swarm here takes a more "upload and forget" like approach. New content is synced to the network. In order to achieve a random,

uniform distribution, Swarm nodes get assigned a random address which is in the same address space as the hashes of content

chunks. Using a distance function, every content chunk is pushed to the least distant node(s). That allows for initial distribution.

Both IPFS and Swarm achieve auto-scaling by having nodes cache relayed chunks. A simple caching policy (LRU) is expected to

have nice properties like good performance and DDOS resistance.

In the tradition of Ethereum, the Swarm design includes economic incentives to encourage nodes to behave this way. The Swarm

Accounting Protocol (SWAP) uses Ethereum smart contracts to provide a means for paying for storage and bandwidth.

While Swarm allows for and encourages peering agreements between nodes (exchange of resources instead of payment), this

makes Swarm suitable for more use cases. For example somebody wanting to store a highly replicated backup may decide to just

pay for it. Or somebody without nodes but with highly popular content may boost availability of that content by just paying a smart

contract.

However the current swarm client has SWAP disabled by default, because it's not yet ready. The current implementation reflects PoC

0.2 of the Roadmap.

IPFS also plans to add an incentive layer for ensuring content availability. Initially Filecoin (whitepaper) was intended to be built on

the Bitcoin blockchain. On Devcon2, Juan Benet explained why Filecoin was late and that the plan was now to implement it on

Ethereum (video).

Another difference between IPFS and Swarm is that Swarm is more tailored for hosting web content.

When uploading something, by default a manifest file is auto-generated. The hash returned by the upload process points to that

manifest file.

Example:

$ swarm up /tmp/BCSC_highlights_2.mp4

I1220 14:20:04.062573 upload.go:171] uploading file /tmp/BCSC_highlights_2.mp4 (47566494 bytes)

I1220 14:20:05.792035 upload.go:180] uploading manifest

e1e7ac801bd7bedfc1da07158ece6a74d8c5f0aeb02679f2c8f3e45ebe38b7e5

26.04.2024 1/2

https://blog.ethereum.org/2016/12/15/swarm-alpha-public-pilot-basics-swarm/
http://swarm-guide.readthedocs.io/en/latest/usage.html#ethereum-name-service
https://github.com/ipfs/go-ipfs/blob/master/importer/chunk/splitting.go#L12
https://github.com/ethereum/wiki/wiki/%C3%90%CE%9EVp2p-Wire-Protocol
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/libp2p/go-libp2p
https://en.wikipedia.org/wiki/Kademlia
https://en.wikipedia.org/wiki/Kademlia
https://github.com/ipfs/examples/tree/master/examples/pinning
https://github.com/ipfs/faq/issues/47
https://github.com/ipfs/notes/issues/58
http://swarm-guide.readthedocs.io/en/latest/architecture.html?highlight=sync#syncing
http://swarm-guide.readthedocs.io/en/latest/architecture.html?highlight=kademlia#logarithmic-distance-and-network-topology
https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29
https://github.com/ethersphere/swarm/wiki/Swap
https://github.com/ethersphere/swarm/wiki/Swap
https://github.com/ethereum/go-ethereum/projects/6
http://filecoin.io/filecoin.pdf
https://www.youtube.com/watch?v=Itb_2EMgBUI

e1e7ac801... is the hash of the generated manifest file. Its content is:

$ curl http://localhost:8500/bzzr:/e1e7ac801bd7bedfc1da07158ece6a74d8c5f0aeb02679f2c8f3e45ebe38b7e

5

{"entries":[{"hash":"ca2eca8928f0ef957a8327d9de1cef6366b104fbc01d81e13357d94c61dd92fb","contentTyp

e":"video/mp4"}]}

Thus the root hash of the video actually uploaded is ca2eca8928....

If using the bzz url scheme instead of bzzr as above where the 'r' stands for raw, the e1e7ac801 hash directly leads to the video,

see link.

The manifest concept was introduced in order to reflect the behaviour of web servers in regard to picking a file for the generic URL

(for example Apache defaults to index.html.

More on Swarm url schemes and manifests can be found here.

While IPFS is intended to replace http, Swarm embraces it for its main API.

Using IPFS requires running an IPFS node (even if in a browser).

Swarm, on the other hand, doesn't consider its http api an intermediate workaround. As a consequence, it also allows and

encourages using HTTP POST for uploading.

Usage of the RPC interface of the Swarm client is recommended for debugging purposes only (source.

IPFS supports upload via HTTP gateway, but defaults to an RPC API.

Here is a comparison from the viewpoint of Swarm developer Viktor Trón. Related Reddit thread.

Swarm has a dedicated Gitter channel which has become quite active since the alpha publication.

Related issues:

Related to lab10 - Research #13: Research IPFS In Progress

History

#1 - 22.12.2016 20:47 - didi

- Related to Research #13: Research IPFS added

#2 - 30.12.2016 20:01 - didi

Another related project is Zeronet (self description: Decentralized websites using Bitcoin crypto and BitTorrent network).

Demo gateway here.

Index of some sites here.

Example site Cyphernomicon.

My understanding:

It's basically a Bittorrent overlay which makes it suitable for website hosting.

Similar auto-scaling like IPFS and Swarm, but no auto-distribution a la Swarm and no plans (?) for a built-in incentive system.

#3 - 01.01.2017 17:34 - didi

- Description updated

Powered by TCPDF (www.tcpdf.org)

26.04.2024 2/2

http://swarm-gateways.net/bzz:/e1e7ac801bd7bedfc1da07158ece6a74d8c5f0aeb02679f2c8f3e45ebe38b7e5/
https://httpd.apache.org/docs/current/mod/mod_dir.html#directoryindex
http://swarm-guide.readthedocs.io/en/latest/usage.html?highlight=bzzr#content-retrieval-hashes-and-manifests
https://github.com/ipfs/js-ipfs#use-in-the-browser-with-browserify-webpack-or-any-bundler
http://swarm-guide.readthedocs.io/en/latest/usage.html?highlight=rpc#the-http-api
http://swarm-guide.readthedocs.io/en/latest/usage.html?highlight=rpc#swarm-ipc-api
https://github.com/ipfs/go-ipfs/issues/1819
https://ipfs.io/docs/api/
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://www.reddit.com/r/ethereum/comments/4e0x8q/ipfs_swarm/
https://gitter.im/ethereum/swarm
https://gitter.im/ethereum/swarm
https://zeronet.io/
http://zeronet.d10r.net:43110
http://127.0.0.1:43110/kaffiene.bit/data.txt
http://zeronet.d10r.net:43110/1FEyaWnhzsH7DFMB1nBJYqfPBBjcHnwLCR
http://www.tcpdf.org

